Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms.

نویسندگان

  • A J Méndez
  • P G Tahoces
  • M J Lado
  • M Souto
  • J J Vidal
چکیده

A computerized method to automatically detect malignant masses on digital mammograms based on bilateral subtraction to identify asymmetries between left and right breast images was developed. After the digitization, in order to align left and right mammograms the breast border and nipple were automatically detected. Images were corrected to avoid differences in brightness due to the recording procedure. Left and right mammograms were subtracted and a threshold was applied to obtain a binary image with the information of suspicious areas. The suspicious regions or asymmetries were delimited by a region growing algorithm. Size and eccentricity tests were used to eliminate false-positive responses and texture features were extracted from suspicious regions to reject normal tissue regions. The scheme, tested in 70 pairs of digital mammograms, achieved a true-positive rate of 71% with an average number of 0.67 false positives per image. Computerized detection was evaluated by using free-response operating characteristic analysis (FROC). An area under the AFROC (A1) of 0.667 was obtained. Our results show that the scheme may be helpful to the radiologists by serving as a second reader in mammographic screening. The low number of false positives indicates that our scheme would not confuse the radiologist by suggesting normal regions as suspicious.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-Aided Detection and Classification of Masses in Digitized Mammograms Using Artificial Neural Network

In this paper we present a computer aided diagnosis (CAD) system for mass detection and classification in digitized mammograms, which performs mass detection on regions of interest (ROI) followed by the benign-malignant classification on detected masses. In order to detect mass effectively, a sequence of preprocessing steps are proposed to enhance the contrast of the image, remove the noise eff...

متن کامل

Detection of Masses in Digital Mammograms using K-means and Support Vector Machine

Breast cancer is a serious public health problem in several countries. Computer Aided Detection/Diagnosis systems (CAD/CADx) have been used with relative success aiding health care professionals. The goal of such systems is contribute on the specialist task aiding in the detection of different types of cancer at an early stage. This work presents a methodology for masses detection on digitized ...

متن کامل

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

Computer-Aided Mass Detection on Digitized Mammograms using a Novel Hybrid Segmentation System

A Novel hybrid segmentation method has been developed for detection of masses in digitized mammograms using three parallel approaches: adaptive thresholding method, Gabor filtering and fuzzy entropy feature as a computer-aided detection(CAD) scheme. The algorithm consists of the following steps: a) Preprocessing of the digitized mammograms including identification of region of interest (ROI) as...

متن کامل

Normal Mammogram Detection Based on Local Probability Difference Transforms and Support Vector Machines

Automatic detection of normal mammograms, as a “first look” for breast cancer, is a new approach to computer-aided diagnosis. This approach may be limited, however, by twomain causes. The first problem is the presence of poorly separable “crossed-distributions” in which the correct classification depends upon the value of each feature. The second problem is overlap of the feature distributions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 1998